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Heavy flavour measurements
● The study of the production of hadrons containing heavy quarks, i.e. charm and 

beauty, at LHC energies is a sensitive test of QCD calculations based on the 
factorisation approach.

● HF is ideal probe to study initial and final state effects on particle production
● Initial state

– Modification of Parton Distribution Functions
– Gluon saturation and Color-Glass Condensate (CGC) [1]

● Final state
– Parton energy loss in QGP (ΔE g > ΔE q > ΔE Q) [2]
– Hadronization mechanisms (fragmentation/recombination)

[1] E. Iancu et al. Nucl. Phys.A692 (2001) 583
[2] Yu. L. Dokshitzer et al. 1991 J. Phys. G: Nucl. Part. Phys. 17 1602
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Quarkonia in heavy ion collisions
● Heavy quarks are produced at the beginning of the collision and therefore experience the entire evolution of 

quark-gluon medium produced in heavy-ion collisions.

● Various mechanisms affect production of bound states cc and bb [1-3]

– Binding of heavy quarks is suppressed because of color screening

– Once the bound state is formed, it may dissociate because of interaction with medium

– If there are enough QQ pairs, quarkonium states can be formed, either at the freeze-out or inside the 
QGP: recombination [3,4]

● Different quarkonium properties (binding energies, Debye radius, …) might lead to different behaviors in the 
QGP and in vacuum.

[1] L. Kluberg and H. Satz, “Color Deconfinement and Charmonium Production in Nuclear Collisions”, [arXiv:0901.3831 [hep-ph]].

[2] Matsui & Satz, Phys. Lett. B 178 (1986) 416

[2] Rothkopf, Phys. Rep. 858 (2020) 1-117

[3] Braun-Munzinger & Stachel, Phys. Lett. B 490 (2000) 196

[4] Thews, Schroedter & Rafelski, Phys. Rev. C 63, 054905
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Properties of quarkonia 1S vs 1P
● J/ψ (1S):

– m=3096.90 MeV/c2

– Br(J/ψ→e+e−)=5.97%

– Ebind = 0.64 GeV

● χc0 (1P):

– m=3414.75 MeV/c2

– Br(χc0→J/ψ γ)=1.27%

– Ebind = 0.32 GeV

● χc1 (1P):

– m=3510.66 MeV/c2

– Br(χc1→J/ψ γ)=33.9%

– Ebind = 0.22 GeV

● χc2 (1P):

– m=3556.20 MeV/c2)

– Br(χc2→J/ψ γ)=19.2%

– Ebind = 0.18 GeV

● Systematic studies of different quarkonia in 
the same experiment can give hints on:

– Study cc and bb interaction range and 
color screening in QGP

– Quarkonium dissociation

– Enhancement through regeneration

● Measurements of χcJ (1P) spectra is also 
needed for precise discrimination of prompt  
and non-prompt J/ψ, since χcJ is a dominant 
source of decay J/ψ

● Main challengies for bottomonia: 

– Smaller cross section

– Smaller mass splitting of 1P states

● Υ (1S):

– m=9460.20 MeV/c2

– Br(Υ→e+e−)=2.38%

– Ebind = 1.10 GeV

● χb0 (1P):

– m=9859.44 MeV/c2

– Br(χb0→Υ γ)=1.76%

– Ebind = 0.70 GeV

● χb1 (1P):

– m=9892.78 MeV/c2

– Br(χc1→Υ γ)=33.9%

– Ebind = 0.67 GeV

● χc2 (1P):

– m=9912.21 MeV/c2)

– Br(χc2→Υ γ)=19.1%

– Ebind = 0.64 GeV
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J/ψ suppression at SPS
One of the first evidence of existence of deconfined 
quark-gluon matter was observation of J/ψ suppression 
in Pb-Pb collision at √sNN=17 GeV (NA50, SPS [1])

● ε > 2.3 GeV/fm3: the first drop in J/ψ yield due to the 
disappearance of the χc , responsible for a fraction of 
the observed J/ψ

● ε > 3.1 GeV/fm3: stronger suppression due to 
dissolving the more tightly bound J/ψ 

● Observed suppression can be naturally anticipated 
and understood in a deconfinement scenario as 
resulting from the melting of the charmonia states 
above a certain energy density

[1] M. C. Abreu et al. [NA50], “Evidence for deconfinement of 
quarks and gluons from the J/psi suppression pattern measured 
in Pb+Pb collisions at the CERN SPS,” Phys. Lett. B 477 (2000)
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J/ψ suppression at RHIC and LHC

[1] ALICE collaboration, PLB766 (2017) 212 
[2] PHENIX collaboration, Phys. Rev. C 84 (2011) 054912

● ALICE [1] and PHENIX [2] observed a clear J/ψ 
suppression at forward rapidity

● Suppression description calls for variety of physics 
mechanisms including gluon saturation, gluon 
shadowing, initial-state parton energy loss, cold nuclear 
matter breakup, color screening, and charm 
recombination.

● Smaller suppression for central events at LHC vs RHIC 
despite a collision energy more than 10 times higher → 
First clear sign of charmonium regeneration

● Quarkonium polarization in AA (as compared to the one 
in pp) can also probe regeneration

● In addition, quarkonium polarization (vs Event Plane) 
can probe initial stages of HI collisions: impact of strong 
magnetic field in QGP and large vorticity



15.12.2022 HF at ALICE 3 7

ψ(2S) suppression at LHC

● As a function of pT, increasing trend of the J/ψ and 
ψ(2S) RAA at low pT

● indication of recombination

● ψ(2S) shows a stronger suppression than the J/ψ in all 
centralities

● ψ(2S) suppression does not depend on centrality 
centrality within the current uncertainties
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Prompt and non-prompt J/ψ at LHC

● Non prompt J/ψ are more suppressed than prompt J/ψ in 
central collisions, prompt J/ψ are less suppressed at low 
pT than at higher pT (and even enhanced at low pT)

● indication of recombination

● Non-prompt J/ψ data is compatible with models 
implementing beauty quark energy loss at high pT
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Open charm in heavy ion collisions

Heavy quarks as hard probes investigate medium for whole momentum domain

● Hard scale given by the quark mass

● Most charm-quark transport models describe both the RAA and anisotropic flow (v2)

● Radiative energy loss critical for high momentum
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Charm vs beauty energy loss

● D mesons from bottom decays less suppressed than those formed from charm

● Indication of mass dependent collisional and radiative suppression e.g. dead cone effect
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Lessons from HF studies

● Over last 20 years of charmonium studies in heavy-ion collisions 
advances of experiments were going along with theory development

● For understanding underlying physics of quarkonium production and 
evolution in QCD medium, precision measurements of different 
charmonium and bottomonium states are needed:
– Statistics enhancement via increased luminosity and faster detector readout
– Systematic uncertainties improvement via better particle identification and 

background suppression
– Direct measurements of states other than J/ψ are needed to probe effects of 

color screening, dissociation, recombination

● The next-generation heavy-ion experiment ALICE 3 at LHC will pursue 
these studies in Run 5 and beyond
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ALICE 3 concept
Advanced detector:
● Compact all-silicon tracker with high-

resolution vertex detector
● Superconducting magnet system
● Particle Identification over large acceptance:

● muons, electrons, hadrons, photons
● Fast read-out and online data processing

ALICE collaboration, Letter of intent for ALICE 3: A next generation 
heavy-ion experiment at the LHC. 
CERN-LHCC-2022-009 ; LHCC-I-038 http://cds.cern.ch/record/2803563 

Running scenario for 6 years with ALICE 3
● Heavy ions: 1 month/year 35 nb-1 for Pb-Pb
● Under study: lighter species for higher luminosity
● pp at = 14 TeV: 3 fb-1 / year compared to Run 3+4

http://cds.cern.ch/record/2803563


15.12.2022 HF at ALICE 3 13

ALICE 3 tracker and vertex detector

 

Tracker and vtx detector consists of 11 barrel layers and 
2x12 forward discs:
● Pseudorapidity: |η|<4
● Longitudinal extension: |z|<400 cm 
● Radial positions: 0.5 < R < 80 cm

Primary vtx reconstruction: better than 10 μm
Secondary vtx (D0, Λc): better than 5 μm
Momentum resolution: better than 0.6 mm at B=2T
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ALICE 3 ECAL
● The Electromagnetic Calorimeter (ECal) is planned to cover the full central barrel 

region and one forward region, i.e. an rapidity range of −1.6 < η < 4. 
● Most of the rapidity range will be instrumented with a sampling calorimeter. 
● A fraction of the central barrel will be covered by the existing PbWO4 crystals for the 

measurement of χc and soft direct photons.

ECAL energy resolution:

b, GeV½ 0.1 0.1 0.02
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ALICE3 detector layout



15.12.2022 HF at ALICE 3 16

Quarkonia measurement at ALICE 3 

Muon chambers at central rapidity
● ~70 cm non-magnetic steel hadron absorber
● search spot for muons ~0.1 x 0.1 ( )
● ~5 x 5 cm2 cell size
● matching demonstrated with 2 layers of muon chambers
● scintillator bars
● wave-length shifting fibers
● SiPM read-out
● possibility to use using RPCs as muon chambers optimized for 

reconstruction down to pT = 0 GeV/c

Large acceptance ECal (2π coverage)
● sampling calorimeter O(100) layers (1 mm Pb 

+ 1.5 mm plastic scintillator)
● PbWO4-based high energy resolution segment 

critical for measuring P-wave quarkonia and 
thermal radiation via real photons

S-state quarkonia will be detected in traditional dilepton decay channel:
● J/ψ(Υ) → e+e−, μ+μ−

P-state quarkonia will be reconstructed via 2-prong decay:
● χcJ → J/ψ γ;    χbJ → Υ γ (J=0,1,2)
Leptons will be detected and identified in central tracker with muon identifier and 
electromagnetic calorimeter
Photons will be detected with precise electromagnetic calorimeter and via photon 
conversion
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X-section and kinematics of χcJ (1P)
Pythia8 simulations pp @ 13 TeV

Production x-section Electrons |y|<0.5 Photons |y|<0.12

Due to small mass difference of χc1 and J/ψ, photons are essentially low-energy
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Benchmark of J/ψ reconstruction ALICE 3 

J/ψ signal-to-background and significance in pp collisions at √s = 14 
TeV (Lint = 3 fb−1 ) and in Pb-Pb collisions at √sNN = 5.5 TeV (Lint = 5.6 
nb−1), corresponding to one-year data taking.

Decays of J/ψ in the muon channel are reconstructed 
by selecting tracks with muon ID
in the MID, implying a minimum transverse 
momentum of  1.5 GeV/c at η = 0.∼
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ECAL for electron ID

Relation of electron energy deposited in ECAL and electron track momentum reconstructed in 
tracking system is a measure for electron ID.
● At high electron momentum (p>1 GeV/c), efficiency and purity of e-ID with ECAL is high in pp 

collisions.
● In Pb-Pb collisions, e-ID purity is expected to be lower because of accidental track-cluster 

matching in high-multiplicity environment
● At low momentum, e-ID in ALICE 3 is provided by TOF and RICH
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ECAL performance for χc mass resolution

Invariant mass difference spectra of decay χcJ → J/ψ γ with a photon detected in
the ECal at mid-rapidity assuming different stochastic term of the photon energy resolution: 
b = 0.02 GeV1/2 (left) and b = 0.05 GeV1/2 (right).

Only high-precision ECAL is suitable for separation of χc1 and χc2. 
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Open charm in ALICE3

D-meson decays detectable in tracking system and in calorimeter are considered:

● D0→K−π+π0 (BR=14.4±0.5% including intermediate resonances),

● D0*(2007)→D0π0 (BR=64.7±0.9 %)

● D±*(2010)→D0π± (BR=67.7±0.5 %)

Final state reconstruction:

● Charged tracks K−, π+, are reconstructed and identified in ALICE3 central tracker

● π0 are detected via 2γ decays in ALICE3 ECAL
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D-mesons in pp 13 TeV

Signal width on invariant mass spectra depends on π0 candidate selection which, in turns, is defined by ECal energy 
resolution.
● The most narrow D0-meson peak is achieved when both photons from π0 decay hit the central high-resolution 

ECal sector
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Signal/background in pp

D0 D*0(2007) D*±(2010)

ALICE 3 simulations show that S/B of D-mesons reconstruction is enough for spectra 
measurements with high statistical significance in a wide pT range
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Summary
● Heavy flavour production in heavy-ion collisions remains one of the major 

signatures of deconfined QCD matter
● Systematic analysis of charmonium production in heavy-ion collisions at different 

energies and centralities reveal several physics effects responsible for 
production, dissociation and recombination of bound QQ states

● Quantitative probe of various effects will be pursued in the future ALICE 3 
experiment, a successor of ALICE at LHC Point 2 which is planned beyond LS4. 
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