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Introduction

Light-nuclei production is related to search for critical point in QCD phase diagram.

There are various 3D dynamical models with coalescence mechanism of the light-
nuclei production.

Microscopic approaches — PHQMD and SMASH

The thermodynamical approach: no additional parameters needed for light-nuclei
production and light nuclei are produced on the same basis as hadrons.

THESEUS generator is based on the thermodynamical approach.

Main areas of research: study the light-nuclei production at collision energies of the
BES-RHIC, SPS, NICA and FAIR.



3FD model

Target-like fluid: Ol =0

Leading particles carry bar. charge

0uT¢ =—Fpy + F

exchange/emission

The output = Lagrangian test particles (i.e.
fluid droplets) for each fluid a(=p, t or f).

Projectile-like fluid:  8,J5 =0, O, Tp” =—Fg + F,

Fluid droplets = elements of freeze-out
surface in hydrodynamic models.

Fireball fluid: J;%’“ =0,

Baryon-free fluid
The source term is delayed due to a formation time

Source term  Exchange

Observables = numerically integrating
hadron distribution functions over the set

of droplets.

Total energy-momentum conservation:
ou(T + TP + T*) = 0
Physical Input:
Equation of State —
Friction

Freeze-out energy density g, = 0.4 GeV/fm3

3FD: Yu.B. Ivanov, V.N. Russkikh, V.D. Toneey,
PHYSICAL REVIEW C 73, 044904 (2006)

EoS:
hadronic EoS (no phase transition)
hadronic+QGP EoS with 1st-order PT

hadronic+QGP EoS with crossover

EoS: A. Khvorostukhin, V.V. Skokov, V.D. Toneey, K. Redlich,

EPJ C48, 531 (2006) 3



THESEUS event generator

In 2016 the THESEUS event generator was introduced.

(3FD+Particlization+UrQMD): P. Batyuk et al., PHYSICAL REVIEW C 94, 044917 (2016)
THESEUS = 3FD + Monte Carlo hadron sampling + rescatterings/decays via UrQMD
THESEUS presents the 3FD output in terms of a set of observed particles.

There were no light nuclei included.

Since the time THESEUS was first presented, certain updates have been made,
further referred to as THESEUS-v2.

THESEUS-v2: M. Kozhevnikova, Yu. Ilvanov, Yu. Karpenko, D. Blaschke, O. Rogachevsky, PRC 103 (2021) 4, 044905



Hydrodynamic modelling of nuclear collisions for NICA / FAIR

hadrons {x,y,z, E,px,py,pz, etc.}

baryon density (ng/ng) in reaction plane of Au+Au collision at \'sm= 6.4 GeV,b=6fm “ght h UClEl

x [fm]

B n.. & BB
: T T : :

Initial state e hydlrodynamic _— = particlization ~————=m  afterburner ————2m detector response
evolution
| | THESEUS generator (optionally) UrQMD, etc. = GEANT, MPD,BM@N
3-fluid hydrodynamical model (lu. Karpenko, H.Elfner)  (O.Rogachevsky,

(Y.lvanov et al.) P.Batuyk, S.Merts et al.)



THESEUS-v2: updates

No clusters in 3FD originally.

To include light nuclei in thermodynamics, baryon
chemical potential should be recalculated.

The main update: recalculation of baryon chemical
potential taking into account light nuclei production,
proceeding from the local baryon number

Nprimordial N (':I: HEB, T) + Z ?13'(21?; HB,HS, T)

hadrons

= Tlgbservable N (T :U*iE: T) + Z HE(T, P:rBa 1S, T)

hadrons

+ Z ne(z;p'g, ns, T).

nuclei

The list of light-nuclei species is shown in Table.

Nucleus(E[MeV])| J decay modes, in %
d 1 Stable
t 1/2 Stable

*He 1/2 Stable

‘He 0 Stable
“He(20.21) 0 p = 100
“He(21.01) 0 n=24p="76
“He(21.84) 2 n =237, p=63
“He(23.33) 2 n =47, p = 53
“He(23.64) 1 n =45, p = 55
“He(24.25) 1| n=47,p=50,d =3
“He(25.28) 0 n =48, p = 52
“He(25.95) 1 n =48, p = 52
“He(27.42) 2| n=3p=3d=9%
“He(28.31) 1| n=47,p=48,d =5
“He(28.37) 1 n=2p=2d=9
“He(28.39) 2 n=02p=0.2,d=2996
1He(28.64) 0 d =100
“He(28.67) 2 d = 100
“He(29.89) 2 n=04,p=04,d=99.2

Table: Stable light nuclei and low-lying resonances
of the *He system (from BNL properties of nuclides).




THESEUS-v2: afterburner for light nuclei

There is no UrQMD afterburner stage for light nuclei, so we imitate the afterburner by later freeze-out

for light nuclei.

To choose suitable late freeze-out we fit protons by means of the late freeze-out:

£y = 0.2 GeV/fm3.

We choose protons because they are closely related to the light nuclei.
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Fig.: Transverse-momentum
spectra of protons in central
Au+Au collisions.



THESEUS-v2: rapidity distributions, &¢., = 0.2 GeV/fm?.
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Puzzle: reproduction of the 3He data is better than that of deuterons, in spite of that 2He heavier.



mr-spectra: deuterons and Helium 3
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The slopes change. The curves become in better agreement with data at low my.



Particle ratios
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Fig.: Energy dependence of d/p, t/p, and t/d midrapidity in central Au+Au and Pb+Pb collisions. Simulations at b = 4 fm for

ratios for central (0-10%) Au+Au collisions. Simulations were Au+Au, at b = 3 fm (\Syy < 17.4 GeV) and b = 4.6 fm (Syy =
perfo.rmec.j atb =4 fm for AutAu and at b =3 fm for Pb+Pbin 17 4 GeV) for Pb+Pb in rapidity bin |y| < 0.5. N(p) is related to protons
rapidity bin |y| <0.5. without feed-down from weak decays.

Growth near 20 GeV resembles preliminary STAR data, where feed-down from weak decays was subtracted
by means of UrQMD.



Summary

The thermodynamical approach approximately reproduces data on light nuclei with
a single parameter, &¢., = 0.2 GeV/fm?.

The functional dependencies (on y, pr, centrality, mass of light nuclei) qualitatively
are reproduced.

Imperfect reproduction of the light-nuclei data leaves room for medium effects.
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Three-fluid dynamics (3FD) model

The 3FD approximation simulate the early,
nonequilibrium stage of the strongly-
interacting matter:

baryon-rich fluids: nucleons of the
projectile (p) and the target (t) nuclei;

fireball (f) fluid: newly produced
particles which dominantly populate
the midrapidity region.

distribution function

target projectile

fireball

momentum along beam



THESEUS-v2: rapldlty distributions, Efrz = 0.2 GeV/fm?>.
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Resonances of *He are unimportant in midrapidity at the considered collision energies
Puzzle: reproduction of the 3He data is better than that of deuterons, in spite of that 3He heavier.



THESEUS-v2: mp-spectra of protons.
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mr-spectra of protons: thermodynamics works good with soft particles and with hard particles not perfect.



Directed flow v (y)

The single particle distribution function:

AN 1 d*N o0
E—— = 1+ Y 2v,cos(n(¢p —Y
d’p 2m !JTdeTdy( ”;l (n(¢ rRP)))

The first coefficient of Fourier expansion, i.e. directed flow:

d*pr (po/pr) E AN, /d’p _
(@ () = / vy = (cos @) , where ¢ —azimuthal angle.
| ‘ .

/ d*prE dN./d’p

In THESEUS: v, (y) is calculated in terms of sums over hadrons rather than integrals over momenta.



Directed flow v, (y): protons and deuterons
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Nearest plans

Study of v, puzzle for deuterons: py-differential v, (pr);

Including medium effects;
Predictions for NICA energies;

HADES and AGS data;

Hyper-(anti)nuclei.



