Dilepton measurements

Tetyana Galatyuk

GSI / Technische Universität Darmstadt

GW170817 17 Aug 2017 12:41:04 UTC First detection of a binary neutron start mergers through gravitational waves LIGO + VIRGO, PRL 119 (2017) 1611001

□ GRB 170817A ~1,7 s later Observation of the same event through electromagnetic waves (gamma-ray burst)

Fermi GBM + INTEGRAL + LIGO + Virgo, Astrophys.J.Lett. 848 (2017)

MULTI-MESSENGER SIGNALS FROM NEUTRON STAR MERGER

ASTROPHYSICAL COLLIDER

M. Hanauske, Journal of Phys.: Conf. Series 878 (2017) 012031 L. Rezzolla et al., Phys. Rev. Lett. 122, no. 6, 061101 (2019)

□ Violent Universe can now be

- □ heard through gravitational waves
- seen through electromagnetic radiation

What laboratory experiments can tell us about extreme environments in the Universe?

LABORATORY STUDIES OF THE MATTER PROPERTIES IN COMPACT STELLAR OBJECTS

Au+Au $\sqrt{s_{NN}} = 2 \ GeV \quad \emptyset = 16 \ fm \quad \tau \sim 10^{-23} s \quad \rho \sim 2 - 3\rho_0 \quad T < 70 \ MeV$

Collision of heavy-ions at (ultra-)relativistic energies:

- produce and investigate transient states of QCD matter under extreme conditions of temperature and density
- unique role played by electromagnetic radiation

SEARCHING FOR LANDMARKS OF THE QCD MATTER PHASE DIAGRAM

LQCD: A. Bazavov et al., Phys.Lett.B 795 (2019) 15-21 LQCD: S. Borsanyi et al. [Wuppertal-Budapest Collab.], JHEP 1009 (2010) 073 O. Philipsen, Lattice 2019, 1912.04827 [hep-lat]

\Box Vanishing μ_B , high *T* (lattice QCD)

Crossover

□ No critical point indicated by lattice QCD at μ_B < 400 MeV, T >140 MeV (for physical quark masses)

\Box Large μ_B moderate *T* (IQCD inspired models)

- □ Limits of hadronic existence?
- □ 1st order transition?
- □ QCD critical point?
- □ Equation-of-State of dense matter?

High μ_B region – large discovery potential!

SEARCHING FOR LANDMARKS OF THE QCD MATTER PHASE DIAGRAM

HADES Collab., Nature Phys. 15 (2019) 10, 1040-1045 A. Andronic et al., Nature 561 (2018) no.7723

Experimental challenge:

- □ Locate the onset of QGP
- □ Detect the conjectured QCD critical point
- □ Probe microscopic matter properties

Measure with utmost precision:

□ Flavour production (multi-strange, charm)

- □ E-b-e correlations and fluctuations
- □ Dileptons (emissivity of matter)

Almost unexplored (not accessible) so far in the high μ_B region

SHINE A LIGHT! When matter shatters

 \Box Electromagnetic radiation (γ , γ^*)

Penetrating probe

ightarrow mean free path length \gg size of the fireball

□ Reflect the whole history of a collision

☐ No strong final state interaction → leave reaction volume undisturbed

Encodes information on matter properties

- □ Change in degrees of freedom
- Restoration of chiral symmetry
- Transport properties
- Temperature, lifetime, acceleration, polarization

TAKE HOME MESSAGE

Dileptons carry invaluable information in terms of their four-momentum

DILEPTON INVARIANT MASS SPECTRA

Characteristic features

□ 'Primodial' $q\bar{q}$ annihilation (Drell-Yan): □ $NN \rightarrow e^+e^-X$

□ Thermal radiation from QGP and hadron gas: □ $q\bar{q} \rightarrow e^+e^-, \pi^+\pi^- \rightarrow e^+e^-$ □ Short-lived states $\Delta, N^*, ...$

 \Box Multi-meson reactions ('4 π '): $\pi\rho$, $\pi\omega$, πa_1 , ...

Decays of long-lived mesons: $\pi^{0}, \eta, \omega, \varphi$, correlated $D\overline{D}$ pairs, ...

> Necessary ingredients: → Realistic emission rates → Accurate description of fireball evolution

ELECTROMAGNETIC PRODUCTION RATE

EM current-current correlation function

$$\Pi_{\rm EM}^{\mu\nu}(M,p;\mu_B,T) = -i \int d^4x \ e^{ip \cdot x} \ \Theta(x_0) \ \langle\!\langle [j_{\rm EM}^{\mu}(x), j_{\rm EM}^{\nu}(0)] \rangle\!\rangle$$

□ Photons characterized by "transverse" momentun:

Determines both photon and dilepton rates

$$p_0 \frac{dR_{\gamma}}{d^3 p} = -\frac{\alpha_{\rm EM}}{\pi^2} f^B(p_0;T) \ g_{\mu\nu} \ {\rm Im} \, \Pi^{\mu\nu}_{\rm EM}(M=0,p;\mu_B,T)$$

□ Dileptons carry extra information: invariant mass
 → Unique direct access to in-medium spectral function

$$\frac{dR_{ll}}{d^3p} = -\frac{\alpha_{\rm EM}^2}{\pi^3 M^2} f^B(p_0;T) \frac{1}{3} g_{\mu\nu} \, \operatorname{Im} \Pi^{\mu\nu}_{\rm EM}(M,p;\mu_B,T)$$

L.D. McLerran, T. Toimela, Phys.Rev. D31, 545 (1985) H.A. Weldon, Phys.Rev. D42, 2384-2387 (1990) C. Gale, J. Kapusta, Phys.Rev. C35, 2107 (1987) & Nucl.Phys. B357, 65-89 (1991)

EM CORRELATOR IN THE VACUUM Accurately known from e^+e^- annihilation $R \propto \frac{Im\Pi_{em}^{vac}}{M^2}$

J. Beringer et al. (PDG), Phys. Rev. D (2012) 010001 10² Low-mass regime → hadrons) μ⁺μ⁻ - Data ρ/ω ····· u, d, s quarks EM spectral function is ˈə 10 α(e₊e) saturated by light vector σ(e⁺e¯ mesons (VMD $J^P = 1^-$ for •••••••• both γ^* and VM, ρ playing Ш a dominant role) с **LMR** 10^{-1} 0.5 2 2.5 n 1.5 π Invariant mass (GeV/c²) $Im\Pi_{em}^{vac} = \sum_{v=v,v=v} t \left(\frac{m_v^2}{g_v}\right)$

Intermediate-mass regime

Perturbative QCD continuum (quark degrees of freedom)

J.J. Sakurai, Ann.Phys. 11 (1960)

IN-MEDIUM SPECTRAL FUNCTIONS FROM HADRONIC MANY BODY THEORY ρ meson in medium interacts with hadrons from heat bath

J. Alam et al., Annals Phys.286, 159 (2001) S. Leupold, V. Metag, U. Mosel, Int.J.Mod.Phys. E19, 147 (2010) R. Rapp, Acta Phys.Polon. B42, 2823-2852 (2011)

ightarrow
ho-peak undergoes a strong broadening ightarrow baryonic effects are crucial

R. Rapp and J. Wambach, Eur.Phys.J. A6 (1999)

IN-MEDIUM EM SPECTRAL FUNCTIONS

Connection to chiral symmetry χ_c

- Spontaneously broken in the vacuum
- □ Restoration of χ_c at finite *T* and μ_B manifests itself through mixing of vector and axialvector correlators
- $\square \rho$ meson melts in hot/dense matter, a_1 mass decreases and degenerates with near ground-state mass

P.M. Hohler, R. Rapp, Annals Phys. 368, 70-109 (2016) M.P.M. Holt, P.M. Hohler, R. Rapp, Phys.Rev. D87, 076010 (2013)

Chiral mass splitting "burns off", resonances melt

Degeneracy of hadronic chiral partners

C. Jung, F. Rennecke, R.-A. T., L. von Smekal, J. Wambach, Phys.Rev. D95, 036020 (2017)

"If you want to detect something new, build a dilepton spectrometer"

S. Ting

Temperature

Baryochemical potential

<u>High Acceptance DiElectron Spectrometer</u> HADES at SIS18, GSI

<u>Solenoidal Tracker At R</u>HIC STAR at RHIC, BNL

Fixed-target Experiment

Collider Experiment

LEPTON IDENTIFICATION

Electron identification by means of: momentum, specific energy loss, velocity, RICH information

All combined in a multivariate analysis (neural network)

 \rightarrow Best purity and efficiency

LEPTON IDENTIFICATION

Muon identification using absorber technique

THE EXPERIMENTAL CHALLENGE ...

 \Box Lepton pairs are rare probes (λ^2)

□ At few GeV energy regime $Yield_{\rho} \times \Gamma_{ee} / \Gamma_{tot}$ $\rightarrow 1$ decay per 1.000.000 events

Large combinatorial background
 in e⁺e⁻ from Dalitz decays (π⁰ → e⁺e⁻γ) and conversion pairs
 in μ⁺μ⁻ : weak π, K decays

- □ Isolate the contribution to the spectrum from the hot/dense stage
- Low-momentum coverage

There is no such thing as a free lunch

DILEPTONS AS SPECTROMETER

Are narrow in-medium vector meson states with substantial shifted pole mass observed?

 \Box Disfavours "dropping mass" scenario ($m_{had} \sim \langle \bar{q}q \rangle$)

Excess dilepton invariant-mass spectrum strongly supports melting of ρ , in particular due to baryon-induced effects:

NA60 Collab., Eur. Phys. J. C 59 (2009) 607-623 CERES Collab., Phys.Let. B666 (2008) Calculations: R. Rapp and J. Wambach, Eur. Phys. J. A6 (1999)

FROM SPS to RHIC to LHC

	SPS (Pb+Pb)	RHIC (Au+Au)
dN(p)/dy	6.2	20.1
produced baryons (p, \overline{p} , n, \overline{n})	24.8	80.4
p - p	33.5	8.6
particpating nucleons (p - \overline{p})A/Z	85	21.4
total baryon number	110	102

- □ Although the **NET-**baryon density is different at SPS, RHIC and LHC, baryon density is practically the same!
- □ Baryon effects important even at $\rho_{B_{tot}} = 0!$ sensitive to $\rho_{B_{tot}} = \rho_B + \rho_{\bar{B}}$ (ρN and $\rho \overline{N}$ interactions identical)
- □ RHIC, LHC: higher initial temperature, open charm contribution becomes very significant

DILEPTON MASS SPECTRA FROM SPS to LHC ENERGIES

AR

STAR Collab., Phys.Lett. B750 (2015) STAR Collab., arXiv:1810.10159 [nucl-ex]

In-medium spectral function R. Rapp and J. Wambach, Eur. Phys. J. A6 (1999) consistently describes the low-mass dilepton excess for SPS – RHIC BES – RHIC – LHC energies

ALICE Collab., Phys.Rev.C 99 (2019) 2, 024002

ARE WE CREATING A THERMAL MEDIUM IN EXPERIMENTS? Hadron Yields and Statistical Hadronization Model

A. Andronic et al., Nature 561 (2018) no.7723

□ Factor 1000 in beam energy / factor ~2 in temperature

Hadron abundances described in framework of SHM

□ Strangeness canonical treatment at low beam energies

□ Include feed-down from ${}^{4}He$, ${}^{4}H$, ${}^{4}Li$

D. Hahn, H. Stöcker, Nucl.Phys.A 476 (1988) 718-772E. Shuryak, J. M. Torres-Rincon Phys.Rev.C 101 (2020) 3, 034914

COARSE-GRAINED TRANSPORT APPROACH

Bulk evolution from microscopic transport

Apply equilibrium rates locally

□ Simulate events with a transport model

 \rightarrow ensemble average to obtain smooth space-time distributions

 □ Divide space-time in 4-dimensional cells 21×21×21 space cells (1fm³), 30 time steps → ~ 280 k cells

 \Box Determine for each cell the bulk properties like *T*, ρ_B , μ_{π} , collective velocity

□ Use in-medium $\rho \& \omega$ spectral functions to compute EM emission rates → parameterization of RW in-medium spectral function

□ Sum up contributions of all cells

Huovinen et al., PRC 66 (2002) 014903 CG FRA Endres et al.: PRC 92 (2015) 014911 CG GSI-Texas A&M TG et al.: Eur.Phys.J. A52 (2016) no.5, 131 CG SMASH: Phys.Rev.C 98 (2018) 5, 054908

THERMAL DILEPTONS at SIS ENRGY REGIME

CG FRA: Phys. Rev. C 92, 014911 (2015) CG GSI-Texas A&M: Eur. Phys. J. A, 52 5 (2016) 131 CG SMASH: Phys.Rev.C 98 (2018) 5, 054908 HSD: Phys. Rev. C 87, 064907 (2013)

- Thermal rates folded with coarse-grained medium evolution from transport works at low energies
- □ Radiation from a long-lived source $(\tau \approx 13 \text{ fm})$ in local thermal equilibrium
- Supports baryon-driven medium effects at SPS, RHIC, LHC

Robust understanding of emissivity of matter across QCD phase diagram

MESON CLOUD

Exclusive analysis of $pp \rightarrow ppe^+e^-$

HADES Collab., PRC 95, 065205 (2017) HADES Collab., 2004.08265 [nucl-ex]

- \rightarrow Studying the structure of the nucleon as an extended object
- \rightarrow Excitation of a baryon can be carried by the meson cloud
- **QED:** point like γ *NR, Heavy Ion Phys. 17, 27 (2003)
- I&W: two component quark model, PRC 69, 055204 (2004)
- R&P: covariant constituent quark model, PRD 93, 033004 (2016)
- S&M bremsstrahlung: PRC 82, 062201 (2010)

E. Speranza et al., Phys.Lett. B764 (2017) 282 G. Ramalho, T. Pena Phys. Rev. D95 (2017), 014003, D. Nitt, M. Zetenyi, M. Buballa, in preparation

DILEPTONS AS BAROMETER

TRANSVERSE MASS DISTRIBUTIONS OF EXCESS

For each bin of $\mu^+\mu^-$ project transverse mass spectrum: $m_T = \sqrt{p_T^2 + M^2}$

 $\begin{array}{l} \square \ m_T \text{ spectra exponential for} \\ m_T - M > 0.1 \ GeV \ (< 0.1 \ GeV??) \\ \end{array}$ $\begin{array}{l} \square \ \text{Fit with} \ \frac{1}{m_T} \frac{dN}{dm_T} \sim \exp\left(-\frac{m_T}{T_{eff}}\right) \\ \end{array}$ $\begin{array}{l} \square \ \text{Extract} \ T_{eff} \ \text{and} \ \text{plot vs} \ M \end{array}$

THE RISE AND FALL OF T_{eff} OF THERMAL DIMUONS

NA60, Phys. Rev. Lett. 100 (2008) 022302

$\square M < 1 \, GeV$

- □ Strong, almost linear rise of T_{eff} with dimuon mass
- □ Follows trend set by hadrons

 \square M > 1 GeV

- \Box Drop of T_{eff} by ~50 MeV
- □ followed by an almost flat plateau

What can we learn from m_T spectra? \Rightarrow Radial Flow \Rightarrow Origin of dileptons

INTERPRETATION OF THE DILEPTON m_T (p_T) SPECTRA

- □ Hadron p_T spectra: determined at $T_{kin.f.o.}$ (restricted information)
- □ Dilepton p_T spectra: superposition from all fireball stages
 - \Box Early emission \rightarrow high T_{th} , low v_T
 - \Box Late emission \rightarrow low T_{th} , high v_T
- □ Final spectra from space-time folding over $T_{th} \& v_T$ history from $T_{initial} \rightarrow T_{kin.f.o.}$ note: small flow in the QGP phase

For M > 1 GeV:

- $\sim T_{eff}$ independent of *M*, negligible flow $\sim \langle T_{th} \rangle \sim 200 \text{ MeV} > T_{nc}$
- → Early emission, dominance of partons!

AZIMUTHAL ANISOTROPY OF VIRTUAL PHOTONS

- Very cleans tool to diagnose the collective expansion dynamics, i.e. origin of the electromagnetic emission source
- □ Challenging v₂ vs M analysis
 □ Early emission (partonic matter) → small v₂
 □ Late emission (hadronic matter) → large v₂

So far:

→ STAR v_2 of inclusive e^+e^- (not of excess) → HADES v_2 of excess radiation (in prep.)

DILEPTONS AS THERMOMETER

DILEPTONS AS THERMOMETER Acceptance corrected $\mu^+\mu^-$ excess yield

R. Arnaldi et al. (NA60), EPJC 61(2009) 711 NA60, Chiral 2010, AIP Conf.Proc. 1322 (2010)

□ IMR spectrum falls exponentially □ In the IMR the dilepton rate $\frac{dR_{ll}}{dM} \propto (MT)^{\frac{3}{2}} \exp(-\frac{M}{T})$ □ Independent of flow: no blue shift!

 $\langle T \rangle = 205 \pm 12 \, MeV$

ightarrow the only explicit temperature measurement above T_{pc} in heavy-ion collisions!

MAPPING QCD CALORIC CURVE (T vs ε)

DILEPTONS AS CHRONOMETER

THE DILEPTON CLOCK

Centrality dependence of spectral shape

System size dependence of excess

Rapid increase of relative yield reflect the number of ρ 's / R's regenerated in fireball

DILEPTONS AS A CHRONOMETER

Signature for phase transition (and critical point)? \Rightarrow latent heat \Rightarrow longer life time \Rightarrow extra radiation

DILEPTON SIGNATURE OF A FIRST-ORDER PHASE TRANSITION

□ EM SF from analytically continued FRG flow equations

 \Box Dilepton rates at CEP *T***=10** *MeV*, μ =292 *MeV*

R.-A. Tripolt, C. Jung, N. Tanji, L. v. Smekal, J. Wambach, Nucl. Phys. A982 (2019) 775 C. Jung, F. Rennecke, R.-A. Tripolt, L. v. Smekal, J. Wambach, Phys. Rev. D 95, 036020 (2017)

T=10 MeV 100 µ=290 Me∖ -80 µ=297 MeV 80 . μ=298 ΜeV Dilepton yield ratio 60 60 T [MeV] 40 40 m 20 20 0.5 0.2 0.4 0.6 0.8 1.0 ω[GeV] 800 850 900 950 1000 μ_B [MeV] (NeW) ⊢ 110 spectra ratio: with PT / no PT Hydro with PT 2.4 inmed. SF rate aā rate 2.2 100 1.8 90 1.6 80 70 60 50 02 04 06 08 12 10^{-1} Mee (GeV/c²) 3.5 15 2 25 3 4 4.5 $\rho_{\rm B}/\rho_0$

Dilepton radiation in hydrodynamical simulations

Factor of ~2 extra radiation in case of hydro with PT

F. Seck, TG, A. Mukherjee, R. Rapp, J. Steinheimer, J. Stroth, arXiv:2010.04614 [nucl-th] See also F. Li and C.M.Ko, Phys. Rev. C 95 (2017) no.5, 055203

SIGNATURE FOR CHIRAL SYMMETRY RESTORATION Dey, Eletsky and loffe, Phys.Lett. B252 (1990)

- \Box Changes in yield and shape at $M_{ee} > 1.1 \ GeV$ due to ρa_1 chiral mixing
- $\Box \sqrt{s_{NN}} < 6 \ GeV$: negligible $c\bar{c}$, decrease of QGP, significant reduction of Drell-Yan (pA measurements!)
- $\Box \pi a_1 \rightarrow \gamma^* \rightarrow l^+ l^-$ (chiral mixing) is a dominant hadronic source in IMR

R.Rapp, J. Wambach, Adv.Nucl.Phys. 25 (2000)

Guy Chanfray, 1999 Lecture Notes

FUTURE

"You may say I'm a dreamer...

... but I'm not the only one"

TG, Nucl.Phys. A982 (2019) CBM, EPJA 53 3 (2017) 60

Program needs high precision data

- □ High intensity beams
- □ Multipurpose detectors:
 - □ Large acceptance, high efficiency
 - □ Trigger-less, free streaming read-out electronics with high bandwidth online event selection
- □ High-performance / scientific computing

\rightarrow Strong interest internationally

RÉSUMÉ AND PROSPECTS

- Unique possibility of characterizing properties of hot and dense QCD matter with dileptons
- \Box Robust understanding of low-mass dilepton excess radiation through ρ -baryon coupling (at LHC, RHIC, SPS and SIS18 energies)
- Complementary program on exclusive measurements in π , p induced reactions with HADES
- Enable unique measurements
 - Degrees of freedom of the medium
 - Restoration of chiral symmetry
 - Transport properties
 - Fireball lifetime and temperature

There is no mission impossible

- Future experiments aim at utmost precision measurements for rare probes (dileptons and photons)
- □ New theoretical developments are expected to provide chirally and thermodynamically consistent in-medium vector-meson spectral functions (e.g. FRG, lattice QCD)

ightarrow substantial progress in understanding of QCD phenomena

THANK YOU FOR YOUR ATTENTION!

COMPONENTS OF EM PROBES

Degrees of freedom of the medium

□ Thermal dilepton rate in 2-flavor QCD:

 \Box HTL curve is for a thermal quark mass $\frac{m_T}{T} = 1$

Born rate is obtained by using the free spectral function

H.-T. Ding et al., Phys.Rev.D 83 (2011) 034504

Spectral function merges into QGP description

→ Direct evidence for transition hadrons to quarks & gluons

R.Rapp, J. Wambach, Adv.Nucl.Phys. 25 (2000)

COMPONENTS OF EM PROBES

Transport properties

Electric conductivity \rightarrow probes soft limit of EM spectral function

$$\sigma_{EM}(T) = -e^{2} lim_{q_{0} \to 0} \left[\frac{\partial}{\partial q_{0}} Im \Pi_{EM}(q_{0}, q = 0; T) \right]$$

S. Ghosh, S. Mitra, S. Sarkar, Nucl.Phys. A969, 237 (2018)
 M. Greif, C. Greiner, G.S. Denicol, Phys.Rev. D93, 096012 (2016)

Dileptons as polarimeter

Angular distribution of dilepton rate in the photon rest frame:

$$\frac{dR}{d^4qd\Omega_\ell} = \mathcal{N}\Big(1 + \lambda_\theta \cos^2\theta_\ell + \lambda_\phi \sin^2\theta_\ell \cos 2\phi_\ell + \dots\Big)$$

with anisotropy coefficients λ , e.g. $\lambda_{\theta} = \frac{\rho_T - \rho_L}{\rho_T + \rho_L}$

- \blacktriangleright angular distribution of dileptons gives information on polarization of γ^* and thus on production mechanism
- virtual photons from (unpolarized) thermal sources are polarized!
- systematic study of all relevant processes needed!

[E. Speranza, A. Jaiswal, B. Friman, Phys.Lett. B782, 395-400 (2018)]
[E.L. Bratkovskaya, O.V. Teryaev V.D. Toneev, Phys.Lett. B348, 283 (1995)]
[E. Speranza, M. Zétényi, B. Friman, Phys.Lett. B764, 282 (2017)]

CHIRAL SYMMETRY of QCD

- □ QCD Lagrangian has chiral symmetry (χ_c) in the limit of vanishing quark masses
- \Box χ_c is broken spontaneously by dynamical formation of a quark condensate $\langle \bar{\psi} \psi \rangle$
- Quantitative agreement of the quark condensate with lattice QCD (for both FRG and sum rules)

W.j.Fu, J. M. Pawlowski and F. Rennecke, Phys. Rev. D101, no.5, 054032 (2020)
P.M. Hohler and R. Rapp, Phys. Lett. B731 (2014), 103-109
S. Borsanyi et al. (Wuppertal-Budapest), JHEP 09, 073 (2010)

Functional Renormalization Group (FRG)

from aFRG

C. Jung, L. von Smekal, Phys.Rev.D 100 (2019) 11, 116009

ω [MeV]

Data: R. Barate et al. [ALEPH], Eur. Phys. J. C 4 (1998) 409 P.M. Hohler and R. Rapp, Nucl. Phys. A892 (2012) 58-72

Vacuum EM spectral functions from sum rules