Identified charged hadron flow in MPD at NICA

<u>Petr Parfenov</u>^{1,2}, Arkadiy Taranenko¹, Alexander Demanov¹, Dim Idrisov¹, Vinh Luong¹, Anton Truttse¹

¹ NRNU MEPhI, ² INR RAS

for the MPD Collaboration

Workshop on analysis techniques for centrality determination and flow measurements at FAIR and NICA, 24-28 August 2020

This work is supported by: the RFBR according to the research project No. 18-02-40086 the European Union's Horizon 2020 research and innovation program under grant agreement No. 871072

Outline

- Introduction
- Flow performance in MPD
 - Test of corrections for non-uniform acceptance
 - Methods comparison
 - Beam-energy dependence
 - Au+Au vs. Bi+Bi
 - TPC EP vs. FHCal EP
- Summary and outlook

Anisotropic flow at NICA energies

Anisotropic flow at NICA energies is a delicate balance between: (i) the ability of pressure developed early in the reaction zone and (ii) the passage time for removal of the shadowing by spectators

Flow performance study at MPD (NICA)

Multi Purpose Detector (MPD)

Time projection chamber (TPC)

EP plane

FHCal ($2 < |\eta| < 5$) or TPC ($|\eta| < 1.5$)

Time Projection Chamber (TPC)

 Tracking of charged particles •within ($|\eta| < 1.5, 2\pi \text{ in } \phi$) •PID at low momenta Time of Flight (TOF) •PID at high momenta

Forward Hadron Calorimeter (FHCal)

Setup, event and track selection

Event plane method implementation in MPD (NICA)

$$Q_x^m = \frac{\sum \omega_i \cos(m\varphi_i)}{\sum \omega_i}, Q_y^m = \frac{\sum \omega_i \sin(m\varphi_i)}{\sum \omega_i}$$
$$\Psi_m^{EP} = \frac{1}{m} \operatorname{ATan2}(Q_y^m, Q_x^m)$$
FHCal EP: $m = 1, \ \omega = E$
TPC EP: $m = 2, \ \omega = p_T$

- Both FHCal detecors were used for EP
- *E* is the energy deposition in FHCal module
- p_{T} is the track's transverse momentum in TPC
- φ_i is its azimuthal angle
- For *m*=1 weights had different signs for backward and forward rapidity
- Δη-gap>0.05 between TPC sub-events (TPC EP)
- Δη-gap>0.5 between TPC and FHCal (FHCal EP)

$$Res_{n}^{2} \left[\Psi_{m}^{EP,L}, \Psi_{m}^{EP,R} \right] = \left\langle \cos\left[n\left(\Psi_{m}^{EP,L} - \Psi_{m}^{EP,R}\right)\right] \right\rangle$$
$$Res_{n} \left[\Psi_{m}^{EP,true} \right] = \left\langle \cos\left[n\left(\Psi_{RP} - \Psi_{m}^{EP}\right)\right] \right\rangle$$
$$\nu_{n} = \frac{\left\langle \cos\left[n\left(\Psi_{RP} - \Psi_{m}^{EP}\right)\right] \right\rangle}{Res_{n} \left[\Psi_{m}^{EP,true}\right]}$$

Energy distribution in FHCal

https://git.jinr.ru/nica/mpdroot/tree/dev/macro/physical_analysis/Flow

Good agreement between Event Plane and Scalar Product methods

Acceptance filter

Modules 15 (L) and 28 (R) are off

Area $15^{\circ} < \phi < 45^{\circ}$ is off

$v_2(p_T)$: contribution from non-uniform acceptance

Corrections for non-uniform acceptance are needed

Corrections for non-uniform acceptance

• Recentering:

$$\vec{Q}_n = \vec{Q}_n^{\text{Raw}} - \langle \vec{Q}_n^{\text{Raw}} \rangle$$

• Flattening:

$$\Psi_{n} = \Psi_{n}^{\text{Recentered}} + \Delta \Psi_{n}$$

$$n \Delta \Psi_{n} = \sum_{i=1}^{i_{max}} \frac{2}{i} \Big[-\langle \sin(in\Psi_{n}) \rangle \cos(in\Psi_{n}) + \langle \cos(in\Psi_{n}) \rangle \sin(in\Psi_{n}) \Big]$$

In this work n=1 (FHCal EP), n=2 (TPC EP), $i_{max} = 12$

$v_2(p_T)$: check of corrections

EP Resolution: energy dependence

Good performance in the centrality range 0-80% for NICA collision energy range

p_T -dependence of v_1 and v_2 of reconstructed signal

 $v_2(p_T)$: FHCal EP vs TPC EP

Expected small difference between v_2 measured with respect TPC ($\Psi_{2,EP}$) and FHCal ($\Psi_{1,EP}$)

EP Resolution: Bi+Bi vs Au+Au

Expected small difference between EP resolutions for Au+Au and Bi+Bi

$v_n(p_T)$: Bi+Bi vs Au+Au

$v_1(y)$: Bi+Bi vs Au+Au

Bi+Bi collisions.

Elliptic flow: Models vs Data comparison

compared to STAR data for Au+Au √s_{NN}=7.7 GeV

18

Resolution correction factor: GEANT3 vs GEANT4 comparison

GEANT4 has more realistic hadronic shower simulation In the future: use models with fragments in the spectator area

Summary

- Full reconstruction chain was implemented:
 - Combined particle identification based on TPC and TOF
 - Realistic hadronic simulation (GEANT4)
 - Corrections allow us to perform flow measurements even with non-uniform acceptance
- Event plane from FHCal and TPC, scalar product from TPC
- Reconstructed v₁, v₂ are in agreement with MC generated data for Au+Au and Bi+Bi

Thank you for your attention!

Backup slides

MC Glauber Centrality Framework for MPD

This centrality procedure was used in CBM, NA49, and NA61/SHINE: Acta Phys.Polon.Supp. 10 (2017) 919 Implemantation in MPD: https://github.com/IlyaSegal/NICA

MC Glauber Centrality Framework

23

Eccentricity: Comparison w/ UrQMD

Notable difference between MC Glauber and UrQMD eccentricities

Common data format for all models : UrQMD, SMASH, ₱HSD, JAM, AMPT

Track selection

- •N_{TPC hits} >32
- •|p_T|<3
- •|η|<1.5

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

•PID based on TPC+TOF (MpdPid)

p_T^{1.5} 2 GeV/c

2σ DCA, 5 GeV

A 2σ DCA, 11 GeV

.

0.5

Particle identification based on TPC + TOF

$v_{1,2}(p_T)$, Au+Au, $\sqrt{s_{NN}} = 11 \text{ GeV}$

Both directed and elliptic flow results after reconstruction and resolution correction are consistent to that of MC simulation

24.09.2019

v_{1,2} (p_T), Au+Au, √s_{NN} = 5 GeV

Both directed and elliptic flow results after reconstruction and resolution correction are consistent to that of MC simulation

24.09.2019

v_{1,2} (y), Au+Au, √s_{NN} = 11 GeV

are consistent to that of MC simulation

$v_{1,2}(y)$, Au+Au, $\sqrt{s_{NN}} = 5 \text{ GeV}$

are consistent to that of MC simulation

24.09.2019

0.5

0.5

Q,(FHCal)

Q_x(FHCal)

FHCal EP: $v_1(p_T)$

FHCal EP: $v_2(p_T)$ (with uncorr.)

If no corrections were applied (recentering, flattening)

Tpc EP: $v_2(p_T)$ (with uncorr.)

If no corrections were applied (recentering, flattening)

v_2 EP vs. SP methods

